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Abstract
The increased unsprung mass in In-Wheel Motor (IWM) driven semi-active suspension systems leads to degraded
handling stability and ride comfort. In this paper, an output feedback H∞/ generalized H2 (GH2) control strategy
is proposed for semi-active suspensions equipped with Magneto-Rheological (MR) dampers to attenuate vertical
vibration. The H∞ norm is used to evaluate the closed-loop performance, while the GH2 norm is applied to limit
hard constraints of the system. A major challenge arises from the dissipative characteristic of the MR damper, which
introduces nonlinear constraints that complicate optimal control design and limit performance improvements. To address
this issue, the allowable damping force range of the MR damper is identified through MTS850 testbed experiments.
Subsequently, a piecewise controller is designed to approximate the nonlinear constraint as piecewise constant bounds.
The effectiveness of the proposed control strategy has been validated by simulation results.
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Introduction
Energy consumption, environmental pollution, and climate
change have become increasingly critical issues in recent
years. New energy vehicles (NEVs) are seen as an important
solution to these challenges. The transition from internal
combustion engine vehicles to electricity driven motors
stands out as a significant development (Mishra et al., 2022).

Based on the propulsion system, electric vehicles can
be roughly classified into centralized motor driven electric
vehicles and IWM driven electric vehicles (Cai et al., 2022).
The internal combustion engine is replaced with a drive
motor for the centralized motor-driven electric vehicles,
which is then integrated with a traditional transmission
system. While the technology has been well-established,
it suffers from low transmission efficiency and larger size
(Xiao et al., 2024). In contrast, a distributed drive system
is employed in IWM driven electric vehicles, where the
motor is directly integrated into the wheel. It eliminates the
need for complex gearboxes, transmission, and differential
mechanisms, and simplifies the mechanical structure of
the chassis, attracting significant attention from researchers
(Huynh et al., 2022).

However, since the motor is directly integrated into the
wheel, the increased unsprung mass causes changes of the
system’s dynamic characteristics, leading to degraded road
holding and ride comfort performance (Mahmouditabar et
al., 2022). To address this issue, (Nagaya et al., 2003)
innovatively proposes the dynamic-damping IWM driven
system, which suspends the shaftless direct-drive motor and
isolates it from the unsprung mass. (Li et al., 2019; Qin
et al., 2018) conduct dynamic analysis for IWM driven
electric vehicles with this type of structure. The results
indicate that, compared to traditional configurations, the
dynamic-damping IWM driven system effectively attenuates

the negative vibration caused by the increased unsprung
mass. Otherwise, road holding and ride comfort remain in
conflict with each other. Active and semi-active suspensions
have been recognized as promising approaches to provide
a trade-off between these conflicts. Several active control
techniques, such as fuzzy H∞ control (Shao et al., 2017),
finite-frequency H∞ control (Jin et al., 2023), and preview
nonlinear model predictive control (Vidal et al., 2022), have
been proposed to improve the performance of IWM driven
electric vehicles. Due to the high cost and significant energy
consumption associated with active suspension systems,
they are currently limited to a small number of high-end
vehicles (Zhang and Su, 2024). In contrast, semi-active
suspension systems, which regulate suspension dynamics
through controllable dampers, have notable advantages,
including low energy consumption and superior control
performance (Min and Wei, 2024). Therefore, semi-active
suspension systems have attracted significant attention (Yuan
et al., 2023), particularly Magneto-Rheological (MR) semi-
active suspensions (Jin et al., 2020; Ma et al., 2024).

For MR semi-active suspension systems, the dissipative
characteristic of the damper, which introduces a nonlinear
constraint, presents a critical challenge that should be
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addressed during the controller design and optimization
process. ”Clipped-optimal control” is widely used, where
the optimal control force is first computed but then
modified by a clipping strategy based on actuator constraints
(Yang et al., 2023; Savaia et al., 2021; Ma et al.,
2019; Yoon et al., 2021; Ding et al., 2023). However,
this alteration deviates from optimal control principles,
limiting further performance improvements. Subsequently,
a piecewise affine H∞ controller is proposed in (Wu
et al., 2019). However, all conflicting requirements are
integrated into a single weighted cost function. The selection
of appropriate weighting matrices can be challenging.
Fractional-order sliding mode control methods proposed
by (Nguyen et al., 2020) and (Nguyen et al., 2021)
have demonstrated enhanced robustness and flexibility.
Nonetheless, directly accommodating input and state
constraints remains challenging. (Wu et al., 2020) designs
a hybrid horizon varying MPC strategy for vehicle speed
planning in semi-active suspension systems. A dynamic
programming-based solution is provided, but it still requires
considerable computational resources. (Lee et al., 2023)
proposes a model-free deep reinforcement learning control
algorithm for semi-active suspension, where the controller is
trained directly from experimental data. The performance is
limited by the quality and quantity of the data.

In summary, MR semi-active suspensions can effectively
attenuate the deterioration of ride comfort and handling
stability caused by the increased unsprung mass in IWM
driven electric vehicles. The nonlinear constraint of the
MR damper remain challenging. Moreover, the trade-
off between suspension system performance and actuator
limitations requires further optimization. To address this
issue, this paper proposes an output feedback H∞/GH2

control strategy. The H∞ norm is used to minimize the
vertical acceleration of the sprung mass to improve ride
comfort, while the GH2 norm is utilized to limit hard
constraints of the system. Specifically, an output feedback
solution to the control problem is formulated within the
context of linear matrix inequality (LMI) optimization
and multi-objective control. In addition, the nonlinear
constraint is described using a piecewise linearization
method, followed by modeling the system as a linear
affine system. Scope information is introduced to reduce
the conservatism. Simulation results demonstrate that the
piecewise linearization method effectively addresses the
dissipative constraints of the MR semi-active suspension.
The proposed controller achieves an optimal trade-off
between ride comfort, handling stability, and the constraints
on suspension stroke and the performance limits of the MR
damper.

Problem statement
The quarter-vehicle IWM driven semi-active suspension
system model, as shown in Fig.1, can be represented as:

msẍs + ks (xs − xu) + cs (ẋs − ẋu) = u(t)

muẍu + kt (xu − xr)− ks (xs − xu)− cs (ẋs − ẋu)

− kd (xd − xu)− cd (ẋd − ẋu) = −u(t)

mdẍd + kd (xd − xu) + cd (ẋd − ẋu) = 0

(1)

ks
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Figure 1. IWM driven semi-active suspension model.

The numerical values of the suspension parameters are
given in Table 1. xs, xu, xd, and xr represent the vertical
displacements of the vehicle body, wheel, motor, and road
respectively. u(t) is the MR damping force. ẋdef = ẋs − ẋu

represents the deflection velocity, which also corresponds to
the piston velocity of the damper.

Figure 2. MTS850 testbed.

The characteristics of the MR damper are measured on
the MTS850 testbed, as shown in Fig.2, following the
automotive shock absorber testing method QC/T 545-1999.

The displacement sensor used is a BRT38-4M/5M,
manufactured by ShenZhen Briter Technology Co.Ltd. The
velocity is obtained by differentiating the displacement
signals. The acceleration is measured with two ADXL202
modules from Analog Devices. All sensors are calibrated and
filtered to ensure measurement accuracy.

In the external characteristic test, the input signals include
piston stroke, piston velocity, and control current. The
damper used is RD-8041-1.The piston stroke is selected as
a sinusoidal signal with an amplitude of 0.08m, and the
maximum excitation velocity is set to 1.6m/s. The applied
control current ranges from 0 to 1A, with increments of
0.1A. The piston velocity/damping force characteristics is
shown in Fig.3. It can be seen that:

(i) The damping force of the MR damper exhibits
significant hysteresis characteristics in relation to
the piston velocity and the current. Moreover, the
hysteresis becomes more pronounced as the current
value increases;
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(ii) The damping force is approximately available in the
first and third quadrants of the piston velocity/damping
force coordinate system, i.e., dissipative constraint;

(iii) The damping force is asymmetric with respect to the
origin.

Therefore, the design of the suspension controller should
optimize suspension performance while ensuring that the
damping force generated by the control law adheres to the
limitations of the MR damper, including its saturation and
dissipative characteristics.

Remark 1: To describe the hysteresis characteristics of
the MR damper, the control current is selected from 0 to
1A with increments of 0.1A. However, the actual current
is continuous. Therefore, the feasible damping force region
is approximately represented by the shaded area in Fig.3.
It is derived from experimental data and constrained by
the testbed. This region is closely related to the piston’s
maximum velocity, maximum stroke, and current range. If
these parameters remain unchanged, the feasible damping
force region also remains fixed.

Notably, it’s difficult to design a controller for system (1)
with nonlinear constraints. If ”clipped” control is applied, the
problem becomes unconstrained, which renders the optimal
control meaningless.

Figure 3. Piston Velocity/damping force characteristic of the
MR damper.

To address nonlinear constraints in optimal control,
a piecewise linearization method is used to provide a
quantitative description of the available scope of u(t).
According to Fig.3, the piston velocity is divided into three
regions, i.e., [v0, v1], (v1, v2), [v2, v3]. The envelopes of the
available scope are approximated by the following six lines:

hi (ẋdef ) = ai + biẋdef , i = 1, . . . , 6 (2)

where ai and bi are constants, and the values are shown in
Table 2. For v0 ≤ ẋdef ≤ v3, u(t) can be expressed by

h1 (ẋdef ) ≤ u ≤ h4 (ẋdef ) v0 ≤ ẋdef ≤ v1
h2 (ẋdef ) ≤ u ≤ h5 (ẋdef ) v1 < ẋdef < v2
h3 (ẋdef ) ≤ u ≤ h6 (ẋdef ) v2 ≤ ẋdef ≤ v3

(3)

Therefore, the dynamic model of the IWM driven semi-
active suspension system (1) with the nonlinear constraint
can be transformed into a piecewise linear system with
piecewise constant constraints.

Table 1. Parameter numerical values of the suspension.

Description Symbol Value

Sprung mass ms 320kg
Unsprung mass mu 40kg
Motor mass md 10kg
Stiffness ks 18000N/m
Damping cs 1000Ns/m
Tire stiffness kt 200000N/m
Stiffness kd 50000N/m
Damping cd 2000Ns/m

Table 2. Parameter numerical values of ai, bi

i 1 2 3 4 5 6

ai −1747 -801 152 -87 858 1817
bi 433 2800 415 430 2796 400

Control objectives
The control objectives of the suspension system are
summarized as follows:

(i) Ride comfort: minimize the vertical acceleration of the
sprung mass ẍs to enhance ride comfort.

(ii) Handling stability: the dynamic tire load should not
violate the static load in order to maintain handling
stability.

kt(xu − xr) < (ms +mu +md)g

(iii) Suspension stroke: because of the mechanical struc-
ture, the suspension stroke should not violate the
allowable maximum value.

|xs − xu| < Smax

(iv) Actuator limitations: the constraints shown in Fig.3
should be satisfied.

Output feedback H∞/GH2 Control

Piecewise linear system with linear constraints
According to the nonlinearity characteristics of the MR
damper shown in Fig.3, the available scope is first divided
into three regions: G1, G2, and G3. Each region is further
equally partitioned into Na, Nb, Nc segments, respectively.
The segmentation ensures that within each small interval,
the system’s nonlinear constraints can be approximated
by linear constant constraints, thereby enabling the
proposed H∞/GH2 control strategy. Additionally, the scope
containing the origin is taken as symmetric with respect to
the origin. The total number of partition is then given by:

N = Na +Nb +Nc (4)

Define j ∈ {1, 2, . . . , N} as the index of the system
partitions. The left boundary of ẋdef for the j − th partition
is given by:

xLj =


v0 +

(v1−v0)(j−1)
Na

, j ≤ Na

v1 +
(v2−v1)(j−Na−1)

Nb
, Na < j ≤ Na +Nb

v2 +
(v3−v2)(j−Na−Nb−1)

Nc
, Na +Nb < j ≤ N

(5)
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The right boundary of ẋdef for the j − th partition is:

xRj =


v0 +

(v1−v0)j
Na

, j ≤ Na

v1 +
(v2−v1)(j−Na)

Nb
, Na < j ≤ Na +Nb

v2 +
(v3−v2)(j−Na−Nb)

Nc
, Na +Nb < j ≤ N

(6)
The upper and lower bounds of the damping force for the

j − th partition are:

Fj = hm1 (xLj) , m1 = 4, 5, 6

Fj = hm2
(xRj) , m2 = 1, 2, 3

Based on the above analysis, piecewise constant con-
straints are introduced to integrate system constraints into the
controller design.

According to system (1), the state vector is defined
as x =

[
xs − xu ẋs xu − xr ẋu xd − xu ẋd

]T
.

The state-space equation for each partition is established:

ẋ(t) = Āx(t) + B̄1w(t) + B̄2uj(t)

x(t) ∈ ℵj , uj(t) ∈ Jj
(7)

where ℵj := {x | xLj ≤ x2 − x4 ≤ xRj}, is the domain of
the j − th partition. The constant constrain is defined as
Jj :=

{
uj | Fj ≤ uj ≤ Fj

}
. The system matrices are as

follows:

Ā =



0 1 0 −1 0 0
−ks

ms

−cs
ms

0 cs
ms

0 0

0 0 0 1 0 0
ks

mu

cs
mu

−kt

mu

−(cs+cd)
mu

kd

mu

cd
mu

0 0 0 −1 0 1

0 0 0 cd
md

−kd

md

−cd
md


,

B̄1 =
[
0 0 −1 0 0 0

]T
,

B̄2 =
[
0 1/ms 0 −1/mu 0 0

]T
Consistent with the control objectives, the outputs of the
suspension system are defined as:

(i) Control output:

y1(t) =ẍs(t)

=C̄1x(t) + D̄11w(t) + D̄12u(t)
(8)

where

C̄1 =
[
−ks/ms −cs/ms 0 cs/ms 0 0

]
,

D̄11 = 0, D̄12 = 1/ms

(ii) Constraint outputs:

y2(t) = C̄2x(t) + D̄21w(t) + D̄22u(t) (9)

C̄2 =

 1
Smax

0 0 0 0 0

0 0 kt

(ms+mu+md)g
0 0 0

0 0 0 0 0 0

 ,

D̄21 =

 0
0
0

 , D̄22 =

 0
0

1/umax



Output feedback is adopted, with the measurement outputs
selected as follows:

y3(t) =
[
ẋs(t) ẋu(t)

]T
= C̄3x(t)

(10)

where

C̄3 =

[
0 1 0 0 0 0
0 0 0 −1 0 0

]
Remark 2: The analysis of piecewise affine systems

based on a common quadratic Lyapunov function is
often overly conservative. Reference (Hassibi and and
Boyd, 1998) highlights that for piecewise affine systems,
incorporating the ellipsoidal domain information into the
stability conditions during controller design can reduce
conservatism and effectively address the affine terms. This
approach can be reformulated as an LMI representation that
is computationally tractable. The reason is that when x(t) ∈
ℵj , ξj does not need to hold over the entire state space but
only within the specified domain ℵj .

Design of output feedback H∞/GH2 Control
To design a controller that ensures asymptotic stability of
the system, minimizes the control output, and satisfies time-
domain hard constraints. Specifically, minimize the H∞
norm of the closed-loop transfer function from the road
excitation w(t) to the control output y1(t). In addition, the
GH2 norm of the closed-loop transfer function from w(t)
to the constraint outputs y2(t) should be less than 1. This
ensures an optimal trade-off between control performance
and the satisfaction of system constraints.

Define Gwy1(s) and Twy2(s) as the closed-loop transfer
function from w(t) to y1(t), and from w(t) to y2(t),
respectively. The control objective can be described as
follows:

minimize ∥Gwy1∥∞
s.t. ∥Twy2∥g < γ

(11)

The constraint output y2(t) in Eq.(9) has been normalized,
so ∥y2(t)∥ < 1, i.e., γ = 1.

The constraints of most partitions (except for the origin-
included partition) are asymmetric, i.e. Fj ̸= −Fj , whereas
the LMI primarily addresses zero-symmetric constraint
problems. According to (Hassibi et al., 1998), the controller
can be designed in the following form:

uj(t) = Kjy3(t) + ξj , ξj =
Fj + Fj

2
(12)

where ξj is the affine term, from Eq.(12), the following can
be obtained:

Fj − Fj

2
≤ Kjy3 ≤

Fj − Fj

2
(13)

Therefore, the asymmetric constraints on uj(t) are converted
into symmetric constraints on Kjy3(t).

Substituting Eq.(12) into Eqs.(7)-(9), the following can be
obtained:

ẋ(t) = Ãx(t) + B̄1w(t) + B̄2ξj (14)

y1(t) = C̃1x(t) + D̄11w(t) + D̄12ξj (15)
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y2(t) = C̃2x(t) + D̄21w(t) + D̄22ξj (16)

where

Ã = Ā+ B̄2 ∗Kj ∗ C̄3, C̃1 = C̄1 + D̄12 ∗Kj ∗ C̄3,

C̃2 = C̄2 + D̄22 ∗Kj ∗ C̄3

Theorem 1: Assume x(0) = 0, the closed-loop system
described by Eq.(14) is asymptotically stable, the H∞ norm
of the closed-loop transfer function from w(t) to the control
output y1(t) is less than ρ, and the GH2 norm of the closed-
loop transfer function from w(t) to the constraint outputs
y2(t) is less than 1. This is equivalent to the existence
of scalars λj < 0, a positive definite symmetric matrix Q,
and matrices Fj of appropriate dimensions, such that the
following condition holds:

minimize ρ2 (17)

For the origin excluded partitions: Q11 ∗ ∗(
λjB̄

T
2 ξjf

T
j +QET

j

)T −λj

(
1− fjf

T
j

)
∗

C̄1Q+ D̄12FjC̄3 0 −I

 < 0

(18)
where

Q11 =QAT +AQ+ C̄T
3 F

T
j B̄T

2 + B̄2FjC̄3

+ λjB̄2ξjξ
T
j B̄

T
2 + ρ−2B̄1B̄

T
1[

Q ∗
C̄2Q+ D̂22FjC̄3 γ2I

]
> 0 (19)

For the origin included partitions: Z11 ∗ ∗
B̄T

1 −ρ2 ∗
C̄1Q+ D̄12FjC̄3 0 −I

 < 0 (20)

where

Z11 = QĀT + ĀQ+ C̄T
3 F

T
j B̄T

2 + B̄2FjC̄3

[
Q ∗

C̄2Q+ D̂22FjC̄3 γ2I

]
> 0

If the optimal solution
(
ρ∗, Q∗, F ∗

j

)
exists, the static

output feedback controller gain is given by:

K∗ = F ∗
j ∗ (V ∗)

−1 (21)

where V ∗ =
(
C̄3Q

∗C̄T
3

) (
C̄3C̄

T
3

)−1

Proof:
Firstly, the design of the H∞ control is introduced,

along with the proofs for inequalities (18) and (20), which
ensure the asymptotic stability of the system and minimize
∥Gwy1∥∞. Subsequently, the GH2 control is applied, and
the proof for inequality (19) is presented, ensuring that the
system satisfies ∥Twy2

∥g < 1.
(i) Output feedback H∞ control
Define

∥Gwy1∥∞ := sup
w(t)∈L2

∥y1(t)∥2
∥w(t)∥2

< ρ (22)

The H∞ norm is the peak value of the maximum singular
value of the system’s frequency response. Therefore,

∥Gwy1∥∞ := sup
w(t)∈L2

∥y1(t)∥2
∥w(t)∥2

= sup
w(t)∈L2

∥ỹ1(t)∥2
∥w(t)∥2

= sup
w(t)∈L2

∥∥∥∥C̃1

(
sI − 1

Ã−1B̄1

)∥∥∥∥
∞

(23)

where
ỹT1 (t)ỹ1(t) =

[
C̃1x(t)

]T [
C̃1x(t)

]
(24)

Therefore, system (14) is asymptotically stable, and the
H∞ norm shown in Eq.(23) is less than ρ if there exists
a Lyapunov function V (x) = xTPx, P = PT > 0, such
that

V̇ (x(t)) + ỹT1 (t)ỹ1(t)− ρ2wT (t)w(t) < 0 (25)

Substituting Eq.(14) yields:[(
Ā+ B̄2 ∗Kj ∗ C̄3

)
x+ B̄1w + B̄2ξj

]T
Px

+ xTP
[(
Ā+ B̄2 ∗Kj ∗ C̄3

)
x+ B̄1w + B̄2ξj

]
+ ỹT1 (t)ỹ1(t)− ρ2wT (t)w(t) < 0

(26)

Inequality (26) can be rewritten as: x
w
1

T  ÃTP + PÃ+ C̃T
1 C̃1 ∗ ∗

B̄T
1 P −ρ2I ∗

ξjB̄
T
2 P 0 0

 x
w
1

 < 0

(27)
where ∗ denotes the symmetric terms in the matrix.

According to Remark 2, in order to reduce the
conservatism in the controller design, ℵj can be outer
approximated by ellipsoids:

ϖj := {x | ∥Ejx+ fj∥ ≤ 1} (28)

where
Ej = 2ε/ (xRj − xLj) ,

ε =
[
0 1 0 −1 0 0

]
,

fj = − (xRj + xLj) / (xRj − xLj)

Applying the S-procedure to inequality (27) the following
can be obtained: Θ1 ∗ ∗

B̄T
1 P −ρ2I ∗

ξjB̄
T
2 P + λjf

T
j Ej 0 λj

(
fT
j fj − 1

)
 < 0

(29)
where λj < 0,

Θ1 = ÃTP + PÃ+ C̃T
1 C̃1 + λjE

T
j Ej

It can be observed that inequality (29) contains nonlinear
terms, i,e,,Kj ∗ P , the following section will address the
linearization.

Define Q = QT = P−1, premultiplying and postmulti-
plying (29) by diag{Q, I, I}, the following can be obtained: Θ2 ∗ ∗

B̄T
1 −ρ2I ∗

ξjB̄
T
2 + λjf

T
j EjQ 0 λj

(
fT
j fj − 1

)
 < 0

(30)
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where

Θ2 = QÃT + ÃQ+QC̃T
1 C̃1Q+ λjQET

j EjQ

Applying the Schur complement twice, inequality (30) can
be transformed into:

Φj + λ−1
j

(
B̄2ξj + λjQET

j fj
) (

1− fT
j fj

)−1(
B̄2ξj + λjQET

j fj
)T

+ ρ−2B̄1B̄
T
1 + λjQET

j EjQ < 0
(31)

According to the matrix inverse lemma, i.e.,(
I − fT

i fi
)−1

= I + fT
i

(
I − fif

T
i

)−1
fi

fT
i

(
I − fif

T
i

)−1
=

(
I − fT

i fi
)−1

fT
i

(32)

Inequality (31) can be reorganized as:

Φj + λ−1
j

(
λjB̄2ξjf

T
j +QET

j

) (
1− fjf

T
j

)−1(
λjB̄2ξjfj +QET

j

)T
+ ρ−2B̄1B̄

T
1

+ λjB̄2ξj
(
B̄2ξj

)T
< 0

(33)

Applying the Schur complement to inequality (33), yields: Θ3 ∗ ∗(
λjB̄

T
2 ξjf

T
j +QET

j

)T −λj

(
1− fjf

T
j

)
∗

C̄1Q+
(
D̄12KjC̄3

)
Q 0 −I

 < 0

(34)
where

Θ3 = QÃT + ÃQ+ λjB̄2ξjξ
T
j B̄

T
2 + ρ−2B̄1B̄

T
1

Inequality (34) still contains nonlinear terms, i.e., Kj ∗Q.
Applying V C̄3 = C̄3Q,Fj = KjV , inequality (34) is

equivalent to (18).
Therefore, for the origin-excluded partitions, the sufficient

condition for system stability and the H∞ norm is that there
exist Q = QT > 0, ρ > 0, and λj < 0 such that the LMI in
(18) holds.

For the origin-included partition, the damping force
constraint is symmetric, and the affine term is zero. The
sufficient condition for the origin-included partition can be
deduced as: if there exist Q = QT > 0, ρ > 0, such that the
LMI in (20) holds.

If inequalities (18) and (20) hold, then (25) can be
obtained, i.e.,

V̇ (x(t)) + ỹT1 (t)ỹ1(t)− ρ2wT (t)w(t) < 0

Integrating both sides of (25) from 0 to t gives:∫ t

0

∥ỹ1(τ)∥2 dτ − ρ2
∫ t

0

∥w(τ)∥2dτ

+ V (x(t))− V (x(0)) < 0

(35)

Applying w ∈ L2[0,∞], if t → ∞ in (35) and with initial
state x(0) = 0, it follows that V (x(0)) = 0, Additionally,
since V (x(∞)) > 0, we have:∫ ∞

0

∥ỹ1(τ)∥2 dτ − ρ2
∫ ∞

0

∥w(τ)∥2dτ < 0 (36)

According to Eq.(23), it follows that ∥Gwy1∥∞ < ρ.
Remark 3:The stability of switching between controllers

can be guaranteed by defining a global quadratic Lyapunov
function.

Remark 4: In the case of origin-included partitions,
where λj < 0, Eq.(29) is infeasible. Moreover, in origin-
included partitions, the damping force approximation is
symmetric about the origin, resulting in the affine term
being zero. Therefore, categorizing controller design into
“origin-included partitions” and “origin-excluded partitions”
is essential to ensure both mathematical feasibility and
modeling accuracy.

(ii) The maximum magnitude of the constraint output
and the GH2 norm of the system

From Eq.(16), the constraint output is:

y2 =
[

xs−xu

Smax

ku(xu−xr)
(ms+mu+md)g

uj

uj max

]T
= C̄2x(t) + D̄22uj(t)

(37)

where

C̄2 =

 1
Smax

0 0 0 0 0

0 0 kt

(ms+mu+md)g
0 0 0

0 0 0 0 0 0

 ,

D̄22 =

 0
0

1/uj max


Define

ûj = Kjy3 (38)

then
qLj − qUj

2
≤ ûj ≤

qUj − qLj

2

The constraint output in (37) can be transformed into:

ỹ2 =
[

xs−xu

Smax

ku(xu−xr)
(ms+mu)g

ûj

ûj max

]T
= C̄2x(t) + D̂22ûj(t)

(39)

where

D̂22 =

 0
0

1/ûj max


From (11), the GH2 norm from w(t) to ỹ2(t) is:

∥Twỹ2
∥g := sup

w∈L2

∥ỹ2∥∞
∥w∥2

< γ (40)

where ∥ỹ2∥∞ is defined as:

∥ỹ2∥∞ := max
i=1,2,...,n

sup
t≥0

|ỹ2i| (41)

For system (14), with γ = 1 and the initial state x(0) = 0,
the following two conditions are equivalent:

1): The system is asymptotically stable; The GH2 norm
of the closed-loop transfer function from w(t) to constraint
output ỹ2(t),i.e., ∥Twỹ2

∥g < 1;
2): If and only if there exists a positive definite matrix

P = PT , such that the following condition holds:
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 ÃTP + PÃ ∗ ∗
B̄T

1 P −I ∗
ξjB̄

T
2 P 0 0

 < 0 (42)

[
P ∗

C̄2 + D̂22KjC̄3 γ2I

]
> 0 (43)

Condition 1) is verified through condition 2) by the following
process:

Define V (x) = xTPx, P = PT > 0

Premultiplying (42) by
[
xT (t) wT (t) 1

]
and post-

multiplying by
[
xT (t) wT (t) 1

]T
, the following can

be obtained:[(
Ā+ B̄2 ∗Kj ∗ C̄3

)
x+ B̄1w + B̄2ξj

]T
Px

+ xTP
[(
Ā+ B̄2 ∗Kj ∗ C̄3

)
x+ B̄1w + B̄2ξj

]
− wTw < 0

(44)

i.e.,
V̇ (t)− wT (t)w(t) < 0 (45)

Integrating both sides of (45) from 0 to t gives:

xT (t)Px(t) <

∫ t

0

∥w(τ)∥2dτ + xT (0)Px(0) (46)

With x(0) = 0, (46) is equivalent to:

xT (t)Px(t) <

∫ t

0

∥w(τ)∥2dτ (47)

Applying Schur, (43) is equivalent to:(
C̄2 + D̂22KjC̄3

)T (
C̄2 + D̂22KjC̄3

)
< γ2P (48)

From (46) to (48), we obtain:

ỹT2 (t)ỹ2(t)

= xT (t)
(
C̄2 + D̂22KjC̄3

)T (
C̄2 + D̂22KjC̄3

)
x(t)

< γ2xT (t)Px(t)

< γ2

∫ t

0

∥w(τ)∥2dτ

< γ2

∫ ∞

0

∥w(τ)∥2dτ
(49)

Inequality (49) holds for all t ∈ [0,∞). According to (40),
∥Twỹ2

∥g < γ.
Premultiplying and postmultiplying (43) by

diag
{
P−1, I

}
, (19) is obtained, i.e.,[

Q ∗
C̄2Q+ D̂22FjC̄3 γ2I

]
> 0

Remark 5: For origin-excluded partitions, if inequality
(18) holds, (42) follows. For origin-included partitions, if
inequality (20) holds, (42) follows. Therefore, it is sufficient
to satisfy inequality (43).

Simulation results
In this section, the proposed output feedback H∞/GH2

controller is applied to the aforementioned quarter-vehicle
IWM driven semi-active suspension system. Based on the
GBT 4970-2009 ”Automobile Ride Comfort Test Methods”
and the European ISO 2632 standard, simulations are
conducted, including bump pulse input, road with waves, and
random road excitation.

The total partition number N is set to 9, 15, 21,
respectively. Table 3 compares the root mean square (RMS)
values of the vehicle body vertical acceleration for different
N . The comparative experiments are conducted with sky-
hook control and a passive suspension system.

Figs.4-9 present the simulation results for bump, road
wave, and C-grade road excitation when N = 15.

Simulation analysis of bump road excitation
The simulation of bump road is used to characterize the
suspension control performance under the discrete impact
road excitation. The mathematical description is as follows:

xr(t) =

{
A
2

(
1− cos 2πV (t−t0)

L

)
t0 ≤ t ≤ L

V + t0

0 otherwise
(50)

with a height of A = 0.04m, and a width of L = 0.3m,
where t0 is the time when the vehicle enters the bump.

When the vehicle passes the bump at V = 8.3m/s, the
time-domain responses of the in-wheel motor semi-active
suspension are shown in Fig.4 and Fig.5.
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Figure 4. Vibration performance with bump road excitation
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Figure 5. Vibration performance with bump road excitation

All the H∞/GH2 control, sky-hook control, and the
passive suspension satisfy the suspension stroke constraints.
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However, as shown in Fig.5(a), the dynamic-to-static tire
load ratio of both the sky-hook control and passive
suspension violates the constraints, resulting in the wheels
to lift off the ground, which severely impacts the vehicle’s
handling stability. In contrast, the H∞/GH2 control remains
within the constraint limits.

Table 3. P2P Values of Vertical Body Acceleration On Bump
Road Excitation.

Road Excitation Sky-hook Passive H∞/GH2

Bump 4.9204 7.6558 3.3337

To evaluate the ride comfort of different suspension
systems under bump road excitation, the peak-to-peak (P2P)
values of vertical body acceleration are presented in Tables 3.
It quantifies the total fluctuation in vertical body acceleration,
providing the overall dynamic response of the vehicle. The
P2P value is defined as (Feng et al., 2023):

P2P = amax − amin

where amax and amin represent the maximum and minimum
values of the vertical body acceleration, respectively.

Table 3 shows that the proposed control further decreases
the P2P value to 3.3337, a 32.3% reduction relative to
the sky-hook control and over 56% compared to the
passive suspension, which demonstrates the robustness of the
H∞/GH2 control.

Table 4 compares the RMS values of the vertical
acceleration of the vehicle body under different N . For bump
road and road wave excitation, the semi-active suspension
with H∞/GH2 control with N = 15 significantly reduces
the vertical acceleration compared to both the passive
suspension and the semi-active suspension with sky-hook
control. Furthermore, Fig.5(b) illustrates that the output
damping force satisfies the dissipative constraint of the MR
damper.

In addition, the ride comfort at N = 9 and N = 21 is
noticeably inferior to that at N = 15, highlighting the critical
role of selecting an appropriate partition number N in
piecewise linear systems.

The simulation results demonstrate that the proposed
output feedback H∞/GH2 control strategy significantly
improves the performance of the in-wheel motor driven
semi-active suspension system, while also validating the
effectiveness of the piecewise linearization method.

Simulation analysis of road waves excitation
The mathematical description is given by Eq.(50), with
a height of A = 0.11m, and a width of L = 5m. The
simulation results are shown in Fig.6 and Fig.7.

When the vehicle passes over road waves at V =
16.7m/s, Fig.6(a) indicates that the passive suspension
provides the worst ride comfort. As shown in Table 4,
the semi-active suspension with the H∞/GH2 control with
N = 15 provides the best comfort. Fig.6(b) shows that both
the semi-active suspension with sky-hook control and the
passive suspension violate the suspension stroke constraint,
while the semi-active suspension with the H∞/GH2 control
remains within the constraint limits. Fig.7(a) illustrates that
the passive suspension approaches the upper constraint limit
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Figure 6. Vibration performance with road waves excitation
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Figure 7. Vibration performance with road waves excitation

at 0.3s, with the tire about to lift off the ground. In contrast,
the semi-active suspension with sky-hook control has better
performance, and the semi-active suspension with H∞/GH2

control stays well within the constraint limits. Fig.7(b)
demonstrates that the output damping force satisfies the
dissipative constraint of the MR damper, further validating
the effectiveness of the piecewise linearization method.

Simulation analysis of C-grade road excitation
When the vehicle passes C-grade road excitation at V =
18m/s, Fig.8(b) shows that the passive suspension is more
effective in suppressing the suspension stroke. Although the
semi-active suspension with sky-hook control and H∞/GH2

control perform slightly worse than the passive suspension,
they still remain within the mechanical structure constraints.
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Figure 8. Vibration performance with C-grade road excitation

From Fig.8(a) and Table 4, for the C-grade road excitation,
the sky-hook control provides the best comfort. Fig.9(a)
reveals that the dynamic-to-static tire load ratio of both
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Table 4. RMS Values of Vertical Body Acceleration Under Different Excitation.

Road Excitation Sky-hook Passive H∞/GH2(N = 9) H∞/GH2(N = 15) H∞/GH2(N = 21)

Bump 0.0861 0.1243 0.0910 0.0612 0.1054

Road waves 0.3424 0.3932 0.2753 0.2694 0.2754

C-grade 1.9402 2.8667 2.2673 2.2624 2.1968
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Figure 9. Vibration performance with C-grade road excitation

the semi-active suspension with sky-hook control and the
passive suspension violates the constraint limits. In contrast,
the semi-active suspension with H∞/GH2 control remains
within the constraints. Fig.9(b) shows that the dissipative
constraint of the MR damper are satisfied.

Therefore, a balance between ride comfort and handling
stability is achieved through the proposed H∞/GH2 control.

Figure 10. Piston Velocity/damping force characteristic of the
MR damper with conventional H∞ control

To demonstrate the contribution of this paper, Fig.10
shows the piston velocity–damping force relationship of the
MR damper with conventional H∞ control, subjected to
C-grade road excitation. It clearly violates the dissipative
property of the MR damper and reduces system performance,
which confirms the necessity of addressing the dissipative
constraints. This issue would be even more pronounced in
testbed experiments. However, due to equipment limitations,
testbed experiments could not be conducted in this study.
Future work will focus on validating the proposed control
strategy through testbed experimentation.

Conclusions
In IWM driven electric vehicles, the increased unsprung
mass often leads to negative vibration in ride comfort and
handling stability. To address this challenge, an output
feedback H∞/GH2 control strategy was proposed. The

nonlinear constraints of the MR damper were approximated
using piecewise constant constraints. Simulation results
demonstrate that the proposed piecewise linearization
method effectively addresses the dissipative constraint of
the semi-active suspension system. Compared to the semi-
active suspension with sky-hook control and the passive
suspension, the semi-active suspension with H∞/GH2

control not only satisfies the mechanical structure limitations
and handling stability requirements but also significantly
improves ride comfort. On the other hand, this work was
overlooked the coupling of electromagnetic forces in in-
wheel motors, which will be a focus of future research.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China (No.62473167), and the Science Foundation
of Jilin Province (No.20240402079GH).

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

References

Mishra S, Varshney A, Singh B, et al. (2022) Driving-
Cycle-Based Modeling and Control of Solar-Battery-Fed
Reluctance Synchronous Motor Drive for Light Electric
Vehicle With Energy Regeneration. IEEE Transactions on
Industry Applications 58:6666-6675.

Cai S, Kirtley JL and Lee CH (2022) Critical Review of Direct-
Drive Electrical Machine Systems for Electric and Hybrid
Electric Vehicles. IEEE Transactions on Energy Conversion
37(4):2657-2668.

Xiao ZX, Hu MH, Chen S, et al. (2024) Bearing Electrical-
Erosion Damage in Electrical Drive Systems: A Review. IEEE
Transactions on Transportation Electrification 10(2):3428-
3442.

Huynh TA, Chen PH and Hsieh MF (2022) Analysis and
Comparison of Operational Characteristics of Electric Vehicle
Traction Units Combining Two Different Types of Motors.
IEEE Transactions on Vehicular Technology 71(6):5727-5742.

Mahmouditabar F, Vahedi A and Takorabet N (2022) Design and
Analysis of Interior Permanent Magnet Motor for Electric
Vehicle Application Considering Irreversible Demagnetization.
IEEE Transactions on Industry Applications 58(1):284-293.

Nagaya G, Wakao Y and Abe A (2003) Development of an in-
wheel drive with advanced dynamic-damper mechanism. JSAE
Review 24(4):477-481.

Li Z, Zheng L, Ren Y, et al. (2019) Multi-objective optimization
of active suspension system in electric vehicle with In-Wheel-
Motor against the negative electromechanical coupling effects.
Mechanical Systems and Signal Processing 116:545-565.

Prepared using sagej.cls



10 Journal Title XX(X)

Qin YC, He CC, Ding P, et al. (2018) Suspension hybrid control for
in-wheel motor driven electric vehicle with dynamic vibration
absorbing structures. IFAC-PapersOnLine 51:973-978.

Shao XX, Naghdy F and Du HP (2017) Reliable fuzzy H∞

control for active suspension of in-wheel motor driven electric
vehicles with dynamic damping. Mechanical Systems and
Signal Processing 87:365-383.

Jin XJ, Wang JD, He XK, et al. (2023) Improving Vibration
Performance of Electric Vehicles Based on In-Wheel Motor-
Active Suspension System via Robust Finite Frequency
Control. IEEE Transactions on Intelligent Transportation
Systems 24(2):1631-1643.

Vidal V, Stano P, Tavolo G, et al. (2022) On Pre-Emptive In-Wheel
Motor Control for Reducing the Longitudinal Acceleration
Oscillations Caused by Road Irregularities. IEEE Transactions
on Vehicular Technology 71(9):9322-9337.

Zhang B and Su XP (2024) Dynamic modeling and elastic
characteristic analysis of the transverse leaf spring suspension.
Journal of Mechanical Science and Technology 38:1051–1058.

Min DL and Wei YT (2024) An adaptive control strategy for a semi-
active suspension integrated with intelligent tires. Mechanical
Systems and Signal Processing 212:111281.

Yuan Q, Zhou HL, Chen SL, et al. (2023) Designing a
Switched Takagi-Sugeno Fuzzy controller for CDC semi-active
suspensions with current input constraint. Mechanical Systems
and Signal Processing 199:110450.

Jin TH, Liu ZM, Sun SS, et al. (2020) Development and evaluation
of a versatile semi-active suspension system for high-speed
railway vehicles. Mechanical Systems and Signal Processing
135:06338.

Ma KW, Xu FY, Zhou YR, et al. (2024) Design, dynamic modeling
and testing of a novel MR damper for cable-stayed climbing
robots under wind loads. ISA Transactions.

Yang HH, Liu QW, Zhang YC, et al. (2023) An adaptive sliding
mode fault-tolerant control for semi-active suspensions with
magnetorheological dampers based on T-S fuzzy vehicle
models. Journal of Vibration and Control 29(1-2):251-264.

Savaia G, Sohn Y, Formentin S, et al. (2021) Experimental
automatic calibration of a semi-active suspension controller
via Bayesian Optimization. Control Engineering Practice
112:104826.

Ma XB, Wong PK and Zhao J (2019) Practical multi-objective
control for automotive semi-active suspension system with
nonlinear hydraulic adjustable damper. Mechanical Systems
and Signal Processing 117:667-688.

Yoon DS, Kim GW and Choi SB (2021) Response time of
magnetorheological dampers to current inputs in a semi-active
suspension system: Modeling, control and sensitivity analysis.
Mechanical Systems and Signal Processing 146.

Ding RK, Wang RC, Meng XP, et al. (2023) Research on time-
delay-dependent H∞/H2 optimal control of magnetorheolog-
ical semi-active suspension with response delay. Journal of
Vibration and Control 29(5-6):1447-1458.

Wu J, Zhou HL, Liu ZY, et al. (2020) Ride Comfort Optimization
via Speed Planning and Preview Semi-Active Suspension
Control for Autonomous Vehicles on Uneven Roads. IEEE
Transactions on Vehicular Technology 69(8): 8343-8355.

Wu J, Zhou HL, Liu ZY, et al. (2019) A load-dependent PWA-
H∞ controller for semi-active suspensions to exploit the
performance of MR dampers. Mechanical Systems and Signal

Processing 127:441-462.
Nguyen SD, Lam BD and Ngo VH (2020) Fractional-order

sliding-mode controller for semi-active vehicle MRD suspen-
sions. Nonlinear Dynamics 101:795–821.

Nguyen SD, Lam BD and Choi SB (2021) Smart dampers-based
vibration control–Part 2: Fractional-order sliding control for
vehicle suspension system. Mechanical Systems and Signal
Processing 148:107145.

Lee D, Jin S and Lee C (2023) Deep Reinforcement Learning of
Semi-Active Suspension Controller for Vehicle Ride Comfort.
IEEE Transactions on Vehicular Technology 72(1):327-339.

Hassibi A and Boyd S (1998) Quadratic stabilization and control of
piecewise-linear systems. Proceedings of the 1998 American
Control Conference. ACC 3659-3664.

Feng JJ, Liu BX, Luo XQ, et al. (2023) Experimental investigation
on characteristics of cavitation-induced vibration on the runner
of a bulb turbine. Mechanical Systems and Signal Processing
189:110097.

Prepared using sagej.cls


	Introduction
	Problem statement
	Control objectives

	Output feedback H/GH2 Control
	Piecewise linear system with linear constraints
	Design of output feedback H/GH2 Control 

	Simulation results
	Simulation analysis of bump road excitation
	Simulation analysis of road waves excitation
	Simulation analysis of C-grade road excitation

	Conclusions

